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SYNOPSIS 

Phase separation of binary polymer mixtures was numerically simulated by solving the 
time-dependent Langevin equation with Flow-Huggins free energy in two dimensions by 
using a finite difference method. Spinodal decomposition following structure coarsening 
was calculated. Simulation results were verified by evaluating the evolution of the wave 
number obtained from the calculated phase structure by Fourier transformation. Then, 
computer experiments were carried out to investigate effects of volume fraction and polymer 
characters, the number of segments, and solubility parameter on morphology. The phase 
separation time, when the phase began to separate, decreased with deviating volume fraction 
from 0.5 and with decreasing number of segments and difference between solubility param- 
eters. The difference between solubility parameters had the largest influence on the phase 
separation time among them and had two effects, the acceleration of phase separation and 
the restriction of structure coarsening. 0 1995 John Wiley & Sons, Inc. 

INTRODUCTION 
Polymer mixtures, called polymer alloys and blends, 
are very attractive as structural and functional ma- 
terials because of their variable properties. A lot of 
polymer alloys and blends have been developed in 
polymer industries and are commercially available 
for practical products now. Because it is well known 
that their variable properties are caused by mor- 
phology or phase structure, then the morphological 
study is important to develop polymer alloys and 
blends. Experimental studies of phase separation 
and morphology were made by digital image 
analysis' and light ~ca t te r ing .~ ,~  Numerical simu- 
lations of phase separation were performed to in- 
vestigate spinodal decomposition of polymer system 
by Monte Carlo 

The dynamics of concentration fluctuations are 
phenomenally described by the time-dependent 
Langevin equation. Cahn and Hilliard first devel- 
oped a diffusion equation for spinodal decomposi- 
tion,8 and Cook added thermal fluctuations to the 
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equation? Petschek and Metiu applied the Ginz- 
burg-Landau model to numerical simulation of spi- 
nodal decomposition in two dimensions by using a 
finite difference method.'O They discussed that the 
results of simulations appropriated to the spinodal 
decomposition of a two-component mixture on the 
probability of the concentration and the structure 
function. Chakrabarti et al. presented a numerical 
study of the dimensionless Cahn-Hilliard model 
without a thermal fluctuation term for late stages 
of spinodal decomposition in three-dimensional bi- 
nary system and showed that the late-time behavior 
of the system was described in terms of scaling with 
a characteristic length." Ariyapadi et al. predicted 
the domain size in polymer blends during phase sep- 
aration by solving a modified form of the Cahn- 
Hilliard equation, in which the mobility was de- 
scribed as a function of the concentration.12 Chen 
et al. performed a computer simulation of early-stage 
spinodal decomposition of polymer solutions in two- 
dimensional Fourier space considering composition- 
dependent mobility and diffu~ivity.'~ These previous 
studies indicate that the Cahn-Hilliard-Cook equa- 
tion can be used for the prediction of phase sepa- 
ration in binary polymer systems. 
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In practical usage, we are interested in the effect 
of polymer characters on phase separation and 
structure because phase structures are different from 
polymer to polymer. However, the relation between 
polymer characters and the phase separation and 
structure is not discussed so far. In this article, re- 
lations of the number of segments, solubility pa- 
rameter, and volume fraction with the phase sepa- 
ration and structure were investigated in binary 
polymer systems by computer simulation. 

THEORY AND NUMERICAL METHODS 

Phase Separation Model 

The time evolution of concentration fluctuation in 
the spinodal decomposition is described by the non- 
linear Langevin equation. 

where $(r, t )  is the order parameter related to the 
concentration of one of components, F(t )  is the free- 
energy functional, q(r, t )  is the thermal noise, M is 
the constant mobility, t is the time, and r is the 
spatial position vector. The thermal noise plays a 
role in the early stage of phase separation but does 
not affect the phase structure in the late stage. Be- 
cause the interest of this article is taken in the late 
stage of phase separation, the noise term is ne- 
g 1 e c t e d . 

The free-energy functional is assumed to be given 
by the Ginzburg-Landau expansion. 

where kB is Boltzmann's constant, f (c)  is the free- 
energy density, T is the temperature, and K is the 
gradient energy parameter. For polymers, K is given 
by?* 

K = a'/( l8clcZ) ( 3 )  

where c is the concentration (el + cz = 1) and sub- 
scripts 1 and 2 denote polymer 1 and polymer 2, 
respectively. a is the characteristic length related to 
the segment size s:15 

a = [sfc, + s;c2]1/2 (4) 

Substituting eq. (2) into eq. (l), the time-dependent 
Ginzburg-Landau equation is obtained as follows: 

where 

The free-energy density of a binary polymer mixture 
is given by the Flory-Huggins lattices theory: 

where, c = cp, N is the number of segments and x is 
the interaction parameter. From eqs. (6), (7), and 
(8), b and u become: 

The concentration is given from the order param- 
eter: 

where 

In the late stage, order parameters approach 4e or 
-4e in the region except boundary of domains. 

Assuming that T,  M, b, u, and K are constant, 
eq. (5) becomes the following dimensionless equation 
in a simple fashion:" 

(d$/d~) = (1/2)02(-$ + $3 - V2$). (13) 

where 

Polymer Characters 

Polymer characters required for obtaining coeffi- 
cients b, u, and K are the number of segments N, 
segment size s, and interaction parameter x. As- 
suming that the monomer is defined as a segment, 
these parameters are estimated by the following re- 
lations. 
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N = M J M ,  (17) unique to the polymer. The standard condition was 
a symmetric system with A6 = 1, where A6 is the 

s = (ro/M'/2)Mk/2 (18) difference of solubility parameters between polymers 
(19) 1 and 2. X = ( U / R T ) ( 6 ,  - 6 g ) 2  

u = M u / P  
Fourier Transformation 

(20) 

where, M ,  is the weight-averaged molecular weight, 
Mu is the molecular weight of monomer, rO/M'l2 is 
the mean-square end-to-end distance, u is the molar 
volume of solvent, R is the gas constant, 6 is the 
solubility parameter, and p is the density. We can 
get these values of polymers from literature.16 

Calculations 

Equations (5) and (13) were numerically solved in 
two dimensions by using a finite difference method 
for dimension and dimensionless cases, respectively. 
The time derivative is approximated by the forward 
differential scheme. Computations were carried out 
using two-dimensional 128 X 128 lattice grid with 
periodic boundary conditions. It was assumed that 
two components are solved each other a t  the initial 
time and then quenched in an immiscible region. 
The initial concentrations were chosen to be ran- 
domly distributed between -0.01 and +0.01 (the av- 
erage of the fluctuation equals 0) a t  the average con- 
centration or volume fraction because of the neglect 
of the thermal noise. 

Calculation conditions are summarized in Table 
I. The characters of polymer 1 were defined as a 
standard model polymer with N = 5000, s = 0.5 nm, 
u = 50 cm3/mol, and 6 = 9 (ca1/cm3)'/', which were 
nearly extracted from characters of polypropylene. 
Effects of the number of segments, solubility pa- 
rameter, and volume fraction of polymer 2 on mor- 
phology were investigated by numerical experiments. 
For one computing run, only one of the condition 
parameters was changed from each standard value 
underlined in the table. The segment length and the 
molar volume were constant because they were 

Table I Calculation Conditions 

The time evolution of the phase separation is usually 
studied by a light scattering experiment. It was re- 
ported that the power spectrum of two-dimensional 
Fourier transform of the phase structure image is 
equivalent to the scattering intensity.' To verify the 
simulation, the calculated phase structure was an- 
alyzed by the fast Fourier transformation and then 
compared with experimental results. The Fourier 
transform of L X L two-dimensional data is de- 
scribed as: 

The power spectrum of the Fourier transform, P, is 
obtained by the following: 

where A and B are the real part and imaginary part 
of the Fourier transform, respectively. The average 
power spectrum of wave number q is expressed by: 

The reduced wave number Q,  and the reduced time 
7' are defined as follows: 

Polymer 1 Polymer 2 

N i-I 12 50 100 500 1000 
U [cm3/mol] 50 50 
S 0.5 - 0.5 inml - 
6 [ ( ~ a l / c m ~ ) ~ - ~ ]  - 9.0 9.2 9.3 9.5 10.0 10.5 
f" [-I 1 - f" 0.2 0.3 0.4 0.5 

N: number of segments, u: molar volume, s: segment size. 6: solubility parameter, f,: volume fraction 
of polymer 2, underlined; standard values. 
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where, qm is the wave number at which the intensity 
shows the peak of the power spectrum and T ,  is the 
scaling parameter for fitting the time scale to the 
light scattering results. 

RESULTS 

Phase Structures 

Calculated results of phase structures during 
phase separation are shown in Figure 1 in the 
dimensionless scale for a volume fraction of 0.3. 
The results are obtained by solving eq. (13). The 
scale bar indicates the concentration of polymer 
2. Therefore, white and black mean polymers 1 
and 2, respectively. In gray areas, polymer 2 is 
solved in polymer 1 at the concentration indicated 
with the scale bar. At the initial time, the whole 
area is uniformity painted with half-bright gray 

z =o 

1 00 

10 

because the concentration fluctuation is very 
small, about an average concentration of 0.3. In- 
creasing time, the fluctuation increases, although 
the morphology does not change visibly until a 
dimensionless time of 10. After that, the phase 
separation occurs a t  the time between 10 and 100 
and then a droplet/matrix type phase structure 
clearly appears. Polymer 2 becomes droplets in 
the matrix of polymer 1 because the volume 
fraction of the former is less than that of the lat- 
ter. The coalescence coarsening is observed 
with time. 

Also, phase structures for volume fraction 0.5 are 
shown in Figure 2. The phase separation begins a t  
an earlier time than that of volume fraction 0.3. The 
morphology is a fine percolated type and is coarsen- 
ing as it is after that. The boundary between poly- 
mers 1 and 2 is distinct. Figure 3 shows the phase 
structure for volume fraction 0.7. The morphology 
is the droplet/matrix type like that for volume 
fraction 0.3. However, the components are altered 
like the droplets as polymer 1 and the matrix as 
polymer 2. 

20 50 

I000 

Figure 1 
sionless scale. 

Phase structures during phase separation for volume fraction 0.3 in dimen- 
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Figure 2 
sionless scale. 

Phase structures during phase separation for volume fraction 0.5 in dimen- 

Time Evolution of Wave Number 

The Fourier transform images for volume fraction 
0.5 are shown in Figure 4. A circle profile appears 
in each phase structure except the initial one (refer 
to Fig. 2). It is called the spinodal ring. The ring 
diameter decreases with time. Figure 5 shows the 
intensity against the wave number or the time evo- 
lution of the power spectrum. The peak of intensity 
increases with time. On the other hand, the wave 
number qm decreases with time because of the coar- 
sening of the structure. The time evolution of the 
reduced wave number is shown in Figure 6, com- 
paring with the experimental one? As shown in the 
figure, we were able to find one scaling parameter 
7, to fit the calculated results to the experimental 
ones. This indicates that the calculation was made 
successfully. 

Effects of Polymer Characters 
The statistical dispersion, cfi = (42) - (@>', is shown 
in Figure 7 as a function of a dimensionless time, t* 
= kBTMt, for the change of volume fraction f,. 

Where, () means average, and the results are ob- 
tained by solving eq. (5). The results for volume 
fractions 0.6 and 0.7 are almost same as those of 0.4 
and 0.3, respectively. There is no phase separation 
when f, 5 0.2 or fu L 0.8. The phase separation time, 
which is defined as a time when @ rises up rapidly 
from zero, is delayed with decreasing and increasing 
volume fraction from 0.5. The curve is shifted in the 
time direction by changing volume fraction. 

Figure 8 shows the effect of the number of seg- 
ments N .  The phase separation time increases with 
decreasing the number of segments. The evolution 
of @ is, however, not so changed when N > 100. To 
avoid the phase separation, the number of segments 
must be less than 20, which means that one of the 
mixture components must be oligomer not polymer. 
It is noted that the time is a dimensionless number 
defined as t* = KBTMt. The mobility is assumed to 
be constant in the calculation, but it actually de- 
pends on the number of segments. Decreasing the 
number of segments, the mobility increases and then 
the real time is decreased. Therefore, it should be 
considered that there are two counteractive effects 
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Figure 3 
sionless scale. 

Phase structures during phase separation for volume fraction 0.7 in dimen- 

z =O 10 20 50 

100 200 500 1000 
Figure 4 Fourier transformed profiles of phase structures for volume fraction 0.5. 
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Figure 5 
aration. 

Evolution of power spectra during phase sep- 

of the number of segments on the phase separation 
in the real time. 

The solubility parameter dramatically changes 
the evolution of a, as shown in Figure 9. As the 
difference of the solubility parameter, As, decreases, 
the phase separation time increases. If A6 5 0.2 (cal/ 
cm3)lI2, the phase separation is not caused before t* 
= 10,000. For A6 = 1.5, the phase separation is 
caused before t* = 10, which is the earliest time 
among the calculation conditions. increases with 
time, following that it becomes constant after t* 
= 100. This is due to the fact that the morphology 
does not change any more after phase separation 
with time. Phase structures for A6 = 0.5, 1.0, and 
1.5 are shown in Figure 10. For A6 = 0.5, the phase 
separation does not occur at t* = 100, when the 
phase structure is clear for the other conditions but 
the domain size at t* = 1,000 is almost the same as 
that for A6 = 1.0. For A6 = 1.5, a very fine structure 
appears a t  t* = 10 and coarsens a little a t  t* = 100, 
but after that, the fine structure has no more change. 

d 
L 

P e 
g lo-' 
L 

Calculation 
U A Hashimoto et al. 

1 oo 10' 1 o2 1 o3 1 o4 
Reduced time z' 

Figure 6 Comparison of calculated results with exper- 
imental one on evolution reduced wave number for volume 
fraction 0.5. 

0.4, 0.6 

0.4 
8 

o-za 0 1 10 100 lo00 loo00 

D imns i on I ess t i me t* 

Figure 7 
on @. 

Effect of the volume fraction of polymer 2 

The solubility parameter seems to have two effects 
on the phase separation. One is the acceleration of 
phase separation and the other is the restriction of 
structure coarsening. 

DISCUSSION 

The interfacial tension, which is important to dis- 
cuss the phase structure, is an increment of the free 
energy per unit area described as follows: 

Because the calculation was made under isother- 
mal condition, (1/3) kBT is constant. Then U* is 
defined as: 

Moreover, the spinodal decomposition is caused 
when the following relation is satisfied: 

Dimensionless time t* 

Figure 8 
2 on @. 

Effect of the number of segments of polymer 
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Difference between solubi I i t y  parameters 
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Figure 9 
rameters on CP. 

Effect of the difference between solubility pa- 

where, 4,, is the average order parameter. 
Using eqs. (29) and (30), (T* and e were estimated 

for calculation conditions. They are plotted vs. vol- 

-4 ' 'I). 4 
0 0.2 0.4 0.6 0.8 1.0 

Volume fraction f, 

Figure 11 Plots of log u* and E vs. the volume fraction. 

ume fraction f,, as shown in Figure 11. The inter- 
facial tension is maximum at a volume fraction of 
0.5 and decreases with both increasing and decreas- 
ing volume fraction from 0.5. The change of E shows 

t*=m 100 1000 
0 Fract ion 1 

10000 

Figure 10 
(c) A6 = 1.5. 

Phase structures during phase separation for (a) A6 = 0.5, (b) A6 = 1.0, and 
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the opposite tendency to that of u*. The plot of e 
shows that the phase separation is caused in the 
volume fraction range of 0.3 to 0.7 because e is neg- 
ative. On the other hand, when f u  5 0.2 or 0.8 5 f u ,  

the phase will not separate because E > 0. The vol- 
ume fraction to prevent phase separation agrees with 
that obtained by the previous numerical simulation. 
Figure 12 shows CJ* and e vs. the number of segments 
N .  As the number of segments decreases, the inter- 
facial tension is decreased until nearly 50 and then 
dramatically drops after that. e is, however, almost 
constant until 100 and then increases but remains 
being negative. The change of e corresponds to the 
change of the phase separation time owing to num- 
ber of segments in the numerical simulation. Finally, 
Figure 13 shows the effect of the solubility parameter 
on CJ* and e. With decreasing the difference between 
solubility parameters As, the interfacial tension de- 
creases and e increases approaching zero. If As is 
very small, the phase separation may not appear for 
a long time. 

Summarizing the above three figures, the re- 
lation between u* and e is shown in Figure 14. As 
is evident from the figure, large interfacial tension 
cause the phase separation. We can reduce the in- 
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ol 0 
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-2 
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.n o I u. L 

n r  
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1 2 3 4”. 

Nunher o f  segments log(N) 

Figure 12 
ments. 

Plots of log o* and E vs. log-number of seg- 

Difference of solubi l i ty  parameter A 8 ( ( c a l / ~ n ’ ) ~ . ~ )  

Figure 13  
solubility parameters. 

Plots of log u* and E vs. the difference of 

0.2 r 1 

1 f ract  ion 

N u d e r  of segments 
-0.2 

Solubi I i t y  parameter \ I  
B I  

-0.4 -4 1 -3 -2 -1 0 1 2  

Figure 14  Relation between E and log u*. 

terfacial tension by changing the volume fraction, 
number of segments, and solubility parameter. 
However, the occurrence of the phase separation 
cannot be predicted only from the interfacial ten- 
sion. It is noted that the factor that makes e pos- 
itive is only the volume fraction. This corresponds 
with the idea of a phase diagram. For the number 
of segments and solubility parameter, e only ap- 
proaches zero with negative sign as interfacial 
tension decreases. Then, e indicates that the phase 
separation is not prevented by changing the num- 
ber of segments and solubility parameters. On the 
other hand, the phase separation is vanished with 
decreasing them, as described in the previous sim- 
ulation. This discrepancy is due to the difference 
of time scale. e is discussed in infinite time but the 
simulation in finite. If a computer could be run 
infinitely, the phase separation may be caused 
anytime also in simulations, as e indicates. I t  was 
said that the computer simulation is useful to 
predict the occurrence of the phase separation 
within a given time and the phase structure 
after that. 

CONCLUSIONS 

In this article the phase separation of binary polymer 
mixtures was numerically simulated by solving the 
time-dependent Langevin equation with Flory- 
Huggins free energy in two dimensions using a finite 
difference method. The amplification of concentra- 
tion fluctuation and the structure coarsening during 
phase separation process were calculated. To verify 
the computation, the evolution of the wave number, 
a t  which the power spectrum shows peak, was eval- 
uated from the calculated phase structure by the 
fast Fourier transformation and then was compared 
with light scattering results reported in the litera- 
ture. As a result, the calculation was proved from 
good agreement between them. 
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Then, changing volume fraction, number of seg- 
ments, and solubility parameter of one of the com- 
ponents, their effects on phase separation and 
structure were numerically investigated. The phase 
separation time, a t  which the statistic dispersion of 
order parameter began to rise rapidly from nearly 
zero, decreased with deviating volume fraction from 
0.5 and with decreasing number of segments and 
difference between solubility parameters. The dif- 
ference between solubility parameters had the larg- 
est influence on the phase separation time among 
them and had two effects, the acceleration of phase 
separation and the restriction of structure coarsen- 
ing. The effect of the polymer characters was qual- 
itatively explained by the change of interfacial ten- 
sion. 
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